Why URI Declarations?
A comparison of architectural approaches

David Booth, Ph.D.
HP Software

European Semantic Web Conference 2008
Workshop on Identity and Reference

Latest version of these slides:
http://dbooth.org/2008/irsw/slides.ppt
Related paper: http://dbooth.org/2008/irsw/

Views expressed herein are those of the author and do not necessarily reflect those of HP.
Three important roles

• **URI owner:**
 Mints a URI, e.g., http://example#dbooth

• **Statement author:**
 Uses the URI to make an assertion, e.g.,
 \[:s :v <http://example#dbooth> \].

• **Consuming application:**
 Reads the assertion and needs to determine what it means.
The problem

Given an RDF statement, what does it mean?

:s :v <http://example#dbooth> .

What resource does <http://example#dbooth> denote?
URI denotes a resource . . . but how?

URI

http://example#dbooth

Direct Denotes?

Real world interpretation

(A person)
Two-step mapping from URI to resource

Step 1

URI

http://example#dbooth

Set of assertions ("URI definition")

<http://example#dbooth>
 foaf:name "David Booth" .
<http://example#dbooth>
 foaf:workplaceHomepage

Step 2

Real world interpretation
Two-step mapping from URI to resource

<http://example#dbooth>
 foaf:name "David Booth".

<http://example#dbooth>
 foaf:workplaceHomepage
Two-step mapping from URI to resource

Step 2 interpretation:

- `<http://example#dbooth>` denotes whatever resource satisfies these assertions.

Set of assertions ("URI definition")

Real world interpretation

```xml
<http://example#dbooth>
  foaf:name "David Booth" .
<http://example#dbooth>
  foaf:workplaceHomepage
```
Two-step mapping from URI to resource

Scope of semantic web architecture

Step 1

URI

http://example#dbooth

Set of assertions ("URI definition")

<http://example#dbooth>
 foaf:name "David Booth" .
<http://example#dbooth>
 foaf:workplaceHomepage

• Semantic web architecture can only govern step 1!
URI definition determines meaning

Given

:s :v <http://example#dbooth> .

What URI definition did the statement author intend?
Two architectural approaches

Competing definitions:
- All assertions are created equal.
- Statement author decides which definition to use.

URI declarations:
- Use of a URI implies agreement with its follow-your-nose* definition**.
 - If you disagree with the f-y-n definition, then use a different URI (and relate it to the original URI)
- Statement author decides which URI to use.

*Via 303-redirect or removing #fragID from the URI
**At the time the statement involving the URI was made
Competing definitions approach

1. How can the statement author indicate what definition was used?
 - rdf:isDefinedBy or owl:imports do not necessarily have this meaning.
 - Hence, consuming app cannot be guaranteed of getting the correct definition.
 - This problem could be addressed by standardization.

2. Alternate URI definitions cause URI collision
 - Same URI has different meaning in different contexts
 - Complicates data merging
URI declarations approach

1. What if the f-y-n definition is clearly erroneous? E.g., domain was hijacked
 - Statement authors can use a new URI that deprecates the old URI
 - Consuming apps can use a **URI translating proxy** to get an alternate definition
Problem: How to indicate a relationship to a URI while disagreeing with its definition

Scenario:
- Alice has published a URI: http://alice.example#foo
- Bob disagrees with one assertion in Alice's URI definition: cos:pluto a cos:planet .
- Bob publishes a new URI: http://bob.example#foo
- Bob's URI definition is similar to Alice's except that it omits the offending assertion. For this reason it is broader (less constraining) than Alice's definition.

Question:
- How can Bob indicate the relationship between his URI and Alice's URI?

Observation:
- Bob's URI definition is skos:broader than Alice's
 - It omits the offending assertion
- The following statement would indicate the relationship:
 <http://alice.example#foo> skos:broader* <http://bob.example#foo> . # WRONG!
- But it would also indicate agreement with the offending assertion!

*Update 16-Jan-2009: This example is also incorrect because skos:broader is being asserted between the resources denoted by http://alice.example#foo and http://bob.example#foo rather than between their URI definitions. For more explanation see http://dbooth.org/2007/splitting/
Solution

To avoid indicating agreement with Alice's assertions, Bob can instead write:

```
_:aliceFoo log:uri "http://alice.example#foo" .
_:aliceFoo skos:broader* <http://bob.example#foo> .
```

Explanation:
- log:uri relates a resource to a URI that denotes it.
- For any URI u, if u is used to denote a resource, then the following relationship is implied:

 \[
 \langle u \rangle \log:uri \ "u" .
 \]

* Correction 16-Jan-2009: The skos:broader assertion above is between the two resources denoted by http://alice.example#foo and http://bob.example#foo when it should have been between their URI definitions. As described in http://dbooth.org/2007/splitting/, the assertion between their URI definitions can be made as follows without indicating agreement with Alice's assertions:

 "http://alice.example#foo" s:isN arrowerThan "http://bob.example#foo" .
owl:sameAs

- Creates value
 - Permits data to be merged. Good!
- Also creates problems when combining data
- Contradiction does not mean that the data is wrong!
 - Models may be okay for one context, but inadequate for another
 - E.g., modeling the earth as flat is good enough for driving directions
- This problem will never go away!
 - Avoid it when possible
 - But be prepared when it happens
Scenario (owl:sameAs)

- File1 says a:a owl:sameAs b:b .
- File2 says b:b owl:sameAs c:c .
- File1 and File2 each work fine by themselves, but cause a contradiction when used together. How can we deal with this?
owl:sameAs effectively creates a new node

\[_\text{ab} \]

- \[_\text{ab} \text{ definition combines assertions from URI definitions of a:a and b:b} \]
- \[\text{Data that merged a:a and b:b effectively used } _\text{ab} \]
- \[\text{To confine a conflict, } s/ a:a/ _\text{ab}/ g \text{ in File1 (or analogously in File2)} \]

- **Clarification 16-Jan-2009:** The skos:broader relation shown above should be between the URI definitions – not between the resources denoted by _\text{ab} and a:a or _\text{ab} and b:b.
Ambiguity and owl:sameAs

- Ambiguity is undesirable but unavoidable
 - An identity that was good enough for one app may be insufficiently precise for another
 - Pat Hayes the physical body?
 - At what point in time?
 - Pat Hayes the legal entity?
- Uses of owl:sameAs would be vanishingly few if limited to cases of identical URI definitions
- owl:sameAs can be viewed as an expression of belief: for this app/context, these two URIs denote the same resource.
AKT example

• AKT protein is discovered
 • URI is minted: :akt
• Years later, research determines that there are actually three distinct proteins: AKT1, AKT2, AKT3
 • New URIs are minted: :akt1, :akt2, :akt3
• :akt is good enough for many applications
 • Do not change it!
 • Indicate that it has been deprecated by :akt1, :akt2, :akt3

*Correction 16-Jan-2009: skos:narrower is making an assertion between the resources denoted by :akt, :akt1, :akt2 and :akt3, when the assertion should have been between their associated URI definitions (though the example does not show their URIs). Using s:isBroaderThanResource as described in http://dbooth.org/2007/splitting/ the above line could have been correctly written as:

However, it would have been better to express the relationship through URIs, using s:isBroaderThan, such as:

 "http://jann.example#akt" s:isBroaderThan
 "http://luke.example#akt1", "http://luke.example#akt2", "http://luke.example#akt3".
httpRange-14 implications

• [http://markbaker.ca/] denotes both:
 • Mark Baker the person
 • Mark Baker's web page
• Architecturally, this is no different from AKT example!

THEREFO RE:

• Using the same URI to denote both a person and a web page:
 • is not a violation of web architecture, but
 • is a violation of good practice
Good practice guidelines for minting URLs

• Support follow-your-nose dereferencing to URI declaration
 • http URIs
 • Use #hash or 303-redirect URIs
• Put only defining properties in the URI declaration
• Make distinctions that users are likely to need
 • e.g., distinguish a person from his/her web page
• URI declaration should also link to a page describing:
 • Known sources of "ancillary" assertions – including yours
 • Related URIs (skos:broader/ skos:narrower/ skos:related)
• Clearly indicate the change policy for your URI declaration
• Indicate the date last modified
• Do not change your URI declaration
 • Except in accordance with its change policy
• Use persistent URLs (PURLs)
Questions?